
Simply put, The Duckbill Group believes that the main driver of costs stems

from your application’s architecture, so our approach views AWS spend

through a lens that takes those unique circumstances into consideration.

Do you find yourself struggling to answer Finance’s questions about why the AWS bill is so high?

Or the product manager’s questions about what it costs to run their product? Did you just get

handed a list of 50 AWS account numbers and a directive to “unravel this mess”?

If so, you’re not alone.

Managing your cloud costs in a way that creates

lasting impact starts with proactively thinking about

cost implications in all workflows—not just when costs

get “too high.” And when we say all workflows, we

don’t just mean Engineering’s workflows. Building and

maintaining cost-e�ective workflows should be a

collaborative e�ort across multiple departments and

functions within your organization.

This misperception leaves
organizations stuck in a
constant cycle.

For example, think back to your last quarterly planning session. How many roadmap items were requested by or

required coordination with other teams? This could be anything from building new features based on the Product

team’s research to changing existing features based on the Customer Success team’s customer feedback surveys

to changing data models because an upstream dependency keeps breaking their API and all you can do is patch

your own service to keep up.

Engineers may ultimately be responsible for deploying all these changes. But other teams—like Finance, Product,

and leadership—all have a stake in this, too.

Su�ce it to say that managing and optimizing your cloud costs is a complex problem. All of these interdependent

moving parts need to be broken down into smaller, manageable chunks. And those chunks need to be aligned on

the roadmap in order to ensure the work actually achieves your desired business goals.

Through our work with clients, we’ve found the companies managing their costs most e�ectively share certain

traits and perform specific, regular activities. To that end, we’ve developed a model to make it easier for any

organization to achieve success with reining in their cloud costs.

Most articles opining about cost management tend to talk in vague generalities and

only on the obvious-but-not-impactful topics, since really solving the problem

takes much more attention and e�ort than running a quick script or buying a SaaS

cost management tool.

Using the model we’ve developed allows us to quickly grasp where a company is at

with respect to how well they’re doing with cloud cost management, as well as to

easily discuss the topics with other people who aren’t spending every waking

moment thinking about the problem space like Duckbill does.

Framing cost management within a model provides a baseline—a shared

understanding for communication, delegation, and action that creates real, lasting

change. A model ultimately allows all the people in your organization to

constructively contribute to your end goal (i.e., keeping cloud costs under control).

For example, you’ve most certainly run into recommendations to turn o� a bunch

of idle resources. There’s just one problem: those resources just happen to be your

Disaster Recovery failover site. :facepalm:

Even worse, other approaches tend to treat your organization as a single, cohesive

entity capable of moving in perfect lockstep. Sadly, we’ve never encountered this

mythical organization. Our clients are all made of multiple teams with varying levels

of feature velocity and interaction with each other. It’s completely ine�ective to

treat all teams the same when it comes to cost management, as each team likely

has di�erent needs.

Additionally, existing models allow you to iterate in silos that focus on forward

momentum, getting from point A to point B. But what if your team’s path is

di�erent from another team’s path? What if those paths depend on each other

for forward momentum or—even worse—what if their end states conflict with

each other?

Duckbill’s approach provides a comprehensive framework with less specificity and

directionality.Ultimately, this gives your organization greater flexibility in how to

achieve your goals without reducing your ability to act on specific action items.

Each capability is a group of levers your organization can pull to influence its cloud costs.

Capabilities relate to each other and interact with each other. But they are not contingent

on each other for describing maturity. Such flexibility allows our model to flow with the

uniqueness of your organization and provide a more representative description of an

organization’s maturity as it pertains to cost management.

In our experience, many organizations view cloud costs as isolated problems because the work happens at the

sharp end, where engineers spend their time.

Managing cloud costs is a problem every company faces as their cloud spend grows, and many vendors are seeing this

as an important space to attempt to service. In fact, the market for cloud cost management tools is expected to grow

at an estimated 20 percent annually through 2022. But these platforms are not a magic fix-all because the cloud

spend problem doesn’t have a quick solution. You can’t easily solve it by throwing some software at it. And you can’t

easily solve it by tagging your instances and turning stu� o�, either (though both of these solutions can help!).

Architect

Attribute

Invest

Predict

An organization’s main driver of cloud costs is not unused or over-provisioned

resources, despite what seemingly every blog post out there likes to opine on. It’s

the application architecture. This capability covers the lifecycle of your data, data

movement, waste reduction, cloud-nativeness, and ephemerality. Here, you will

need to understand top-level services, fully managed services, and external

services that integrate with AWS, such as Datadog and Databricks, if you use them.

Understanding where your costs are going along business lines is crucial to being

able to make well-informed decisions about engineering investments and cost

optimization e�orts, and to inform budgets and forecasts. This capability covers

tagging and other attribution methods, at both a basic and advanced level, as well

as the business systems created by attributing those costs.

Pre-purchasing resources and negotiating contracts is great when it comes to saving

money on resources you're committed to using. E�ective practices and processes

around these investments are crucial for ensuring you take advantage of maximum

discount levels. This capability covers Reserved Instances, Savings Plans, and

contractual discounts through methods like the Enterprise Discount Program (EDP),

Private Pricing Addendums (PPA), Migration Acceleration Program (MAP), and other

less common methods.

Defining and tracking unit costs is important for understanding your infrastructure's

cost drivers and the interplay between cloud costs and actual usage. E�ective

tracking of unit costs allows for accurate forecasting of AWS spend. This capability

covers the identification of unit cost KPIs, forecasting capabilities, and maintaining

your relationship with AWS to navigate the changing landscape of cloud before it

impacts your business.

@duckbillgroup.com Contact us at sales
Talk to us about an assessment.

Interested in seeing where your organization stacks up on

cloud cost maturity?

For example, do you absolutely need to replicate your data into three availability zones or would replicating into only

two availability zones meet your needs (while cutting your costs)? Are you seeing a large increase in your S3 data

transfer costs? Don’t forget that you can use CloudFront to improve the user experience while dramatically

reducing the costs associated with accessing data within S3.

The cost of moving your data around is more than just the “Data Transfer” line item on your AWS bill. For example,

moving data around unnecessarily can increase the cost of your Aurora bill with all the additional charges for IO

reads and writes. And if you’re not careful, moving data from your VPC to other AWS services could inadvertently

increase your NAT Gateway costs (you did set up all those Gateway and Interface Endpoints, right?).

The key point here to remember is that not all data transfer is the same. Many AWS services have no added cost for

transfering data into and out of Amazon S3. Your goal should be to persist data into Amazon S3 as soon as possible.

Then, after that data is safe and sound, use the various AWS services to ETL your data (Extract, Transform, Load)

into whatever format your application requires. Understanding how AWS charges you to move data from one

destination to another is one of the cost optimization tricks that can help you run enormous data platforms on AWS

for the lowest cost possible.

When it comes to data in the cloud, everyone is quick

to call out their growing data storage costs including

everything from S3 to EBS volumes. But many people

forget one of the largest sources of data costs: the

movement of that data.

Moving data around in AWS is expensive. Work with your

teams to understand your data movement patterns and

business requirements and identify which patterns are

necessary to meet your business requirements.

AWS gives you a multitude of options to run your software on their infrastructure with minimal administrative

overhead. Instead of deploying your software on EC2 instances, consider containerizing your software and

deploying it to ECS—bonus points for Fargate on Spot instances—for a fraction of the price. Of course, you could

also adopt a serverless architecture with Lambda, without any infrastructure to manage at all.

It’s not just compute either. Need a new database but not sure how much storage it will need or how much demand

there will be on it? Aurora Serverless provides database functionality with a dynamic storage volume that can grow

or shrink with your data. When its workload is stable, you can migrate it to an Aurora RDS instance and take

advantage of investments like RDS Reserved Instances.

But there are some places where it might seem harder to move away from AWS’s basic compute resources, such as

with stateful distributed systems (e.g., Kafka, Cassandra, and MongoDB). These systems require high compute,

storage, and IO resources, lots of engineering hours for development and maintenance, and can easily generate a

ton of data transfer charges if they’re not designed e�ciently.

Luckily, AWS has you covered here, too, with their native managed service o�erings. On paper, AWS’s managed

service o�erings may appear to be much more expensive than running the comparable o�ering yourself. But think

about them from a total cost of ownership (TCO) perspective.

Any stateful, distributed system deployed on EC2 instances generally incurs several di�erent buckets of charges:

compute, storage, data replication charges, data query charges, plus the engineering e�ort to manage the entire

system. Meanwhile, AWS’s managed service versions of these solutions charge you a simplified price—and

replication tra�c is free, since they’re running it all.

That’s right: In most cases, data replication is free, and you don’t need to put any engineering e�ort into managing

the system long term. AWS handles that all for you.

It’s nuanced and situation-specific. But it should be involved in every architectural discussion. That way, you always

know the tradeo�s you’re making for your architecture. And, more importantly, you always know why you’re making

those tradeo�s.

Start asking these questions of your teams and departments to better understand your specific situation and

organizational constraints.

Now, it’s worth calling out that—in practice—determining the value of that administrative overhead is hard. For

example, is your team already familiar with how to design and deploy a Kubernetes cluster? How much time are your

engineers actually spending researching and building the infrastructure versus training other teams on how to deploy

to it? Are there other business goals that your team could invest in rather than managing this infrastructure?

Running your entire infrastructure on EC2 instances is

a great way to start with AWS if you’ve never used it

before. But it’s also a great way to quickly rack up a

truly horrific AWS bill without reaping the benefits AWS

has to o�er.

Instead, consider leveraging AWS’s native service

o�erings. They’re a less expensive way to operate in

AWS than using raw compute resources.

In other words, our veggie consumption (er, lack of) isn’t because we don’t know that we should eat more. It’s

because we’re never looking forward to a heaping plate of unseasoned lima beans.

Likewise, tagging your resources just for the sake of tagging won’t help your organization because you’re missing

the crucial component: strategy.

For the best results, start your tagging e�orts as a series of conversations with di�erent members of the team.

Invite the people who can have that conversation in a holistic way. Bring together Finance, Product, and

Engineering/Operations to talk about how each team can leverage tagging to benefit their work. Collaborate to

create a purposeful tagging strategy— one that will incentivize Engineering teams to commit to tagging because it

will actually enable them to do their job more easily and more e�ectively. Track your tagging success (or lack

thereof) at a similar granularity across teams or products. Celebrate the successes of teams that tag all their

resources, thus creating accurate cost attribution, and socialize their workflows with other teams who may be

struggling to tag or get value from their tags. Once you have a tagging strategy that everyone agrees on, you need

to shout it from the rooftops.

Not sure where to start with a tagging strategy?

Lucky for you: AWS has a “thrilling” 24-page Tagging Best Practices Whitepaper. Don’t let the length or the

undoubtedly “edge of your seat” storyline sway you from giving it a quick perusal. It includes a slew of helpful use

cases for various tagging strategies to fit nearly every business need.

It seems like every blog post that talks about “how to

save money” always tells us to tag our resources. But

that advice feels much the same as when the doctor

tells us to eat healthier.

Of course, we all know we should eat more veggies. But

the doctor’s advice doesn’t teach us anything new

about veggies. What we need to learn is how to make

vegetables taste more delicious so that we’ll choose to

eat more of them.

But all the socializing in the world may not actually help your teams to implement and use those tags. So, you may

need to take a more targeted e�ort towards tag adoption.

There are two main strategies to enforce tagging within your organization.

The first strategy is to enable the continuous monitoring of your AWS resources and notify the appropriate teams

and users when their tag usage falls out of compliance.

The second strategy, more commonly found in cloud-mature organizations, takes a hard-nose approach towards

tag enforcement by terminating resources that do not meet the predefined requirements. This one requires

significant buy-in from the organization because—while it may be fun to automatically terminate AWS noncompliant

resources—pulling the rug out from your engineers may not win you many friends at the lunch table.

There is a case to be made that companies should adopt both of these strategies.

AWS Config Managed Rules can help to ensure that your resources are tagged according to your requirements by

reporting on tag compliance and coverage. AWS Organizations can prevent the creation of resources that are

missing required tags. While there isn’t any AWS-built functionality for terminating non-compliant resources (yet!),

the incredibly helpful open source tool Cloud Custodian works quite nicely to define policies and enforce

compliance with those policies across all your various AWS accounts. Cloud Custodian can enforce compliance on

much more than just tags, too.

No matter which strategy you choose to take with tagging your resources, know that the only way to ensure

ongoing success is to have a plan for monitoring and compliance. Creating a process or even—*gasp*—automating

your tagging remediation will help make sure that you are never falling behind on tag coverage.

Learn how di�erent teams in your organization use tags and share that knowledge across the organization. Security

might use tags for audits and patch compliance while Finance uses tags to identify cloud spend attributed to

development work for tax credits. Both are completely valid use cases for di�erent reasons and both generate

di�erent requirements for your organization’s tagging policy. Socializing each team’s tagging requirements provides

business context for why including each tag is so important—which ultimately helps all teams reach their goals.

Tagging is a continual process that requires buy-in

from all people across the organization. The more you

embed resource tagging into your organization’s

culture, the greater your long-term benefits will be.

Tags are for more than just billing or finding out “who

spun up this x1e.32xlarge host?” (Trick question! The

answer is always you. You just forgot to terminate it.)

Generally speaking, you need to spend about $1 million per year with AWS before you can take advantage of AWS’s

Enterprise Discount Program. Once you start spending more than that, you can sometimes be eligible for further

custom pricing contracts on specific services, such as S3, CloudFront, and even data transfer.

Additionally, money spent purchasing Partial Upfront or All Upfront Reserved Instances and Savings Plans can

contribute to your EDP commit requirements. Here’s how it breaks down: When you purchase Reserved Instances or

Savings Plans, you have the option to purchase with some form of upfront commitment. You can think of that

commitment like a downpayment: The more you pay upfront, the greater discount you’ll receive. Meanwhile, when you

engage in a custom pricing agreement, AWS requires you to spend some amount of money over the course of each

year of the agreement. If the services covered by your PPA or EDP o�er Reserved Instances and Savings Plans, the

upfront money you spend on those investments can contribute to your overall PPA or EDP commitment requirements

for the year.

Remember, these are only available for companies spending at least $1 million per year. If that’s you, talk to your

Account Manager for more details.

A little-known fact with AWS is that every account has an Account

Manager, even if you’ve never met them. Trust us: They would LOVE

to help you save money by investing in the AWS relationship.

Seriously, we aren’t making a funny: While many people see their

Account Manager as just the sales rep bent on making you spend more

money, the truth is that they want to make sure you’re happy with

how much you’re spending on their services.

They know that a customer who feels like they are wasting money on

AWS is not going to be a happy customer. Remember, Amazon is in this

for the long game—not short-term wins at the customer’s expense.

Start by thinking about your architecture on a basic level. Perhaps your application is heavily compute-based, so you

expect EC2 costs to spike as lots of new instances spin up to handle tra�c. Or perhaps your application is heavily

storage-based, so you expect S3 spend to go up as users generate and store tons of new data.

This is a great first step. But it only gives you a ballpark idea of cost changes, and Finance will probably want

something a little more concrete and accurate.

Ideally, you want to know which components of your application are directly impacted by additional activity and how

AWS usage for those components will fluctuate accordingly. To answer this question in a financially accurate way,

your teams need to know your product’s unit economics.

Unit economics describes your product in terms of revenues and costs in relation to a KPI that tracks closely with

customer demand. That KPI can be any basic, quantifiable item that creates value for your product. For example, in the

airline industry, the unit economic KPI is usually a seat on an airplane. If you sell a software agent-based security tool,

you might want to figure out the cost to service each deployed software agent. If you operate more in the

business-to-consumer (B2C) market, you may want to focus on your total costs per daily active users (DAUs) and

track cost per 1,000 users. Or maybe your B2C products require factoring in multiple costs like data storage, data

transfer bandwidth, and other charges incurred by each customer, regardless of how many of that customer’s users

are actually using your product. Some clients we’ve worked with even build di�erent models for di�erent application

environments, prioritizing KPIs for production-related spend (normally referred to as Cost of Good Sold or COGS) over

non-production-related spend (e.g., development, staging, and analytics). Your KPI and how you break out your costs

to support your customers will be unique to your overall business.

Once you’ve identified your product’s unit economic KPI, think about the infrastructure costs associated with it. These

infrastructure costs include AWS and any other services you leverage to run the product, like Datadog, PagerDuty,

Twilio, and Splunk. One simplistic approach to calculate your unit economic cost is to take the sum of all the

infrastructure costs (including applicable third-party services) and divide that by your product’s specific unit metric.

That process works great for an organization with a single product and a single set of associated cloud costs. But let’s

be real: You’re likely running multiple products across dozens or hundreds of AWS accounts.

How do you accurately account for each product’s total infrastructure spend when all the cloud usage is shared?

This is where a robust tagging strategy with high coverage comes into play. We mentioned the importance of tagging

and socializing your tag governance earlier specifically for this reason.

Tagging isn’t just about checking a compliance box. It’s about setting your teams up for success by making

data-driven decisions with accurate financial models and unit economics. The more your AWS spend is attributed to

your products, the more accurate your unit economics will be.

We like to think of this as a cost error margin. If only 60% of your taggable AWS spend is attributed to your product(s),

your unit economic data has a 40% margin for error. That’s pretty high.

Fortunately, bringing that cost error margin down is an easily measurable goal. Start by measuring your current cost

error margin based on how much taggable AWS spend is actually tagged. Then, set small goals to work towards

decreasing that error margin down to the industry gold standard of 10% to 15%—e.g., 85% to 90% of your taggable

AWS spend is attributed to your product(s).

Identifying and building your organization’s unit economic model takes work. But the benefits are enormous. Once you

know what a user costs, predicting your AWS spend is only a matter of estimating user growth, which allows Finance

to predict more than just a quarter or two out.

There’s also another less obvious benefit: Once you know the cost of a user and the drivers that lead to that, you can

begin tweaking things to improve your margins. Imagine winning deals with competitive but profitable discounting

because you have the confidence to know exactly what it will cost to service that customer. That’s how you can

leverage unit economics to grow your business in an increasingly competitive economic environment. Not only will

you make your CFO happy with your ability to forecast the complex cloud spend, your Head of Sales will become your

new best friend because you’ve given them a powerful tool for helping them price deals quicker and more easily.

Imagine your company gains publicity and suddenly becomes insanely

profitable. Sales is closing deals left and right. Customer Success is

onboarding new customers around the clock. And your application is

seeing an influx of user tra�c.

How would your AWS spend change? How would your non-AWS

infrastructure-related spend change (think PagerDuty, Datadog, etc.)?

We get it. You scrolled through this hoping to find 10 quick

tips to click a few boxes in the AWS console and cut your bill.

Unfortunately, lasting change is not that simple. According

to a recent survey of 328 large enterprises, 78% failed to

implement their planned digital transformation initiatives.

Their biggest blockers? It wasn’t technology.

It was people.

According to the survey, four of the top five reasons organizations fail digital transformation initiatives are related

to people: particularly organizational structure, governance, culture, and communication channels. But this doesn’t

just apply to large enterprises or technology transformation stories; smaller, cloud-native companies can learn from

this as well.

Any organization leveraging the cloud needs to foster a culture that supports cost thinking. You can direct teams to

complete individual optimization action items. But without a full company cultural shift to proactively think about

cost in every business and architectural decision, you’re going to end up right back where you started.

For a lot of you who’ve been around the block a few times, this might sound familiar. Today’s conversation about

the importance of culture in cloud cost optimization and management is the same conversation that organizations

had about the importance of culture in DevOps. Building organizational commitment around cost savings and cloud

cost management is a similar cultural shift. Bringing together stakeholders across Finance, Product, Engineering,

and senior leadership on this shared mission takes a focused e�ort over many months and years.

@duckbillgroup.com Contact us at sales Let’s chat.Want help negotiating your AWS contracts?

But wait, there’s more: Savings Plans apply to Lambda and Fargate—unlike Reserved Instances. The more aggressive

you can be with your Savings Plan commitment—such as upfront cash commitments and longer terms—the greater

the discounts you can achieve.

Sadly, Savings Plans aren’t available for non-compute resources such as Redshift or RDS. But planning Reserved

Instances there is much cheaper. If you’re in doubt about whether Reserved Instances make sense for a particular

workload, know that the typical break-even point is only seven months. In other words, if you believe the resource will

be there for at least seven months, you’ll save money by purchasing Reserved Instances.

And don’t forget about all the other AWS services that support Reserved Instances, like Amazon Elasticsearch,

Elasticache, and DynamoDB. There are even reservation discounts for some of the more obscure services, such as

Elemental MediaLive and MediaConvert!

The key point here is to track your use of AWS services as they grow and stabilize over time. Make these usage

commitments as soon as you have confidence in your baseline consumption to maximize your savings.

If you have highly static workloads throughout the day, invest in those resources and

AWS will give you significant discounts on their usage spend. You already know

planning Reserved Instance purchases can get...complicated. If you’re not yet familiar

with them, Savings Plans has changed the game for compute discounts by o�ering the

same savings as Reserved Instances but without all of the management overhead.

Our model
contains
four main

capabilities:

 We’ve gathered 10 sticking points we

commonly see that can help you start moving some of the levers within your organization

immediately. These items are presented in no particular order; each is equally impactful.

With that preamble out of the way, let’s talk specifics.

This isn’t your typical list of suggestions, though. These recommendations focus on unconventional nuanced work

that will help to improve your architecture, attribute your costs more accurately, invest in both people and

technology, and better predict your future forecasted spend.

During an engagement with one of our clients, we found a large amount of data transfer flowing between Kinesis,

S3, and Aurora. Most of this data transfer cost was hidden within the data IO costs of Kinesis and Aurora. But after

chatting with the various siloed engineering teams, we learned that most of this data was simply duplicating

streams for di�erent teams to use. By migrating to Kinesis Enhanced Fanout, this client was able to dramatically cut

their costs while simplifying their streaming data infrastructure. Without the context of what was going on, we

never would have found such an opportunity.

One way we do this ourselves is by mapping data flow and dependencies on architectural diagrams and working out

exactly what the client’s business needs are—including needs around data retention, availability, and durability. This

naturally will lead to discussions around cost for various components. Bonus points if you can overlay the costs

onto the diagrams themselves! This will make it easier to identify costly infrastructure components and the context

necessary to evaluate whether optimization work is needed.

As we mentioned earlier, context is everything when it comes

to understanding and improving the complex costs of AWS.

Remember that applications are greater than the sum

of their parts. Understanding how components of your

apps interact across the various AWS services will help

you identify each app’s communication paths. This

will help you decide which paths are required for

business objectives—and which ones are unnecessary,

and can therefore be removed or rearchitected.

Developers often talk about code smell, which refers to

characteristics in the code that might indicate a

deeper problem. But what about infrastructure smell?

That would be all of the infrastructure that doesn’t

quite serve its purpose as e�ciently as it could.

Infrastructure smell isn’t just the idle resources

contributing to waste (although that happens also). It’s all

the infrastructure hacks and one-o� implementations

deployed throughout your AWS accounts.

It could also be resources that have been provisioned and later abandoned and forgotten, databases with low IO

configured to use high IO volume types, or Fargate or VPC logs stored in CloudWatch with no retention policy. Think

about all the places you’re using a hammer and nail when a screw and screwdriver would be more e�ective.

Waste takes more forms than just unused resources, after all. Here are just a few places to start sni�ng:

Infrastructure smell can occur with any new AWS engineering initiative. Building out new products, features, or

integrations deployed on AWS without considering usage and cost impacts can dramatically a�ect your cost margins.

Identify the business requirements for data retention, and configure your log

storage to only keep the most recent logs (e.g., 90 days). If you need to keep logs

for a longer period of time, consider moving them to an infrequent-access S3

storage tier.

Make sure your
logs always have
data retention
policies in place.

Start by understanding the flow of your data into and out of CloudWatch. We often

see companies log to CloudWatch (at a high cost) when logging to S3 would solve the

problem at a dramatically lower price point. Similarly, pulling metric data directly from

CloudWatch can become wildly expensive. Instead, consider implementing an

observability router such as Vector or Fluentbit to route metrics and logs to the best

(and cheapest) destination. Be mindful of third-party observability solutions that

integrate with CloudWatch, such as Datadog and SignalFx, as the CloudWatch

request API can get expensive. We’ve seen situations where the CloudWatch bill that

Datadog is causing is higher than the Datadog invoice!

Avoid using
CloudWatch
as a queue for
metrics and logs.

AWS has an extremely handy built-in tool called AWS Compute Optimizer, which

highlights the compute resources that are underutilized and overutilized based on

the last 14 days of use. But be careful: Compute Optimizer only looks at CPU and

network metrics by default. If you want Compute Optimizer to make

recommendations based on memory utilization, you’ll need to install the

CloudWatch agent on your hosts.

Optimize your
compute usage.

Terminate
unused storage —
particularly EBS
volumes.

EBS costs add up fast, especially if they’re not general-purpose volumes. A quick

CLI command can highlight EBS volumes that are no longer in use. You can

implement an event-driven AWS native governance solution or you can leverage a

third-party cloud governance tool like Cloud Custodian to provide custom reports

of unattached volumes based on criteria like region, linked account, and

user-defined cost allocation tags. Delete these volumes if they’re no longer needed.

If you want to save the data, take a snapshot of the volume before deleting.

If you treat the cloud like a data center, you might as well just have

stayed in the data center to begin with and saved yourself a whole

boatload of money from the migration. Not only are you missing

out on the potential cost savings benefits from using some of the

higher-order managed services like Lambda, Redshift, or

DynamoDB, you are also missing out on all the other benefits they

can provide. To illustrate:

Services like Lambda can give your engineering teams a

streamlined way to quickly build, test, and deploy functions to

your end users without having to think about traditional concepts

like servers and scaling.

Using a backend database service like DynamoDB or Aurora gives your teams access to high levels of performance

and availability—far above what could be designed and built on top of services like EC2.

Most importantly, these services require significantly lower levels of ongoing maintenance to ensure their ongoing

operation. But, since we are talking about cost savings, don’t forget the opportunity cost of running your own

database servers. Think about all the various engineering e�orts you can devote your technical teams to when they

are no longer needed for ongoing database maintenance.

One area where this is particularly prevalent is with migrations to the cloud. While lift-and-shift is a great strategy

for migrating workloads into the cloud quickly, this approach puts you on a shot clock. The longer you hold on to

your legacy infrastructure in the cloud, the harder it will be to complete the migration and actually achieve all the

performance and cost benefits that the cloud provides.

More importantly, you’ll be racking up technical debt as time passes from the original lift-and-shift strategy. This

technical debt can slow down your future product roadmap plans. And it can also wreak havoc on the productivity

and e�ectiveness of your engineers who need to spend time to maintain this fragile infrastructure. The added risk

you will begin to see is the loss of these engineers as their frustrations grow over time. This “brain-drain” will create

a cycle that will make it much harder to modernize and migrate your workloads.

If you’re migrating from a data center to the cloud, make sure your

roadmap includes plans for the lift-and-shift *and* the migration to

cloud-native services afterwards. Treating the cloud as just another

data center by only using the core services (e.g., EC2, EBS, S3) is

hideously expensive. Contrary to what it might seem, the more you

use AWS managed services, the cheaper AWS becomes. According

to Scott Buchholz, a managing director at Deloitte, this pattern is a

common scenario for IT departments: "They treat the cloud like a

virtual data center and they don't change their operations or

procedures when they move to the cloud."

@duckbillgroup.com Contact us at sales

duckbillgroup.com Nov. 2020

If you want help from experts when you’re starting your journey

towards cloud spend optimization, check out our services.

We have helped many teams build the foundational processes

necessary to create lasting change across the organization.

These companies have been able to both save money

and predict, with growing accuracy, how their spend

will change in response to evolving business demands.

 failed to implement their planned
digital transformation initiatives.

